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Stabilization of the lattice Boltzmann method by theH theorem: A numerical test
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For a one-dimensional benchmark shock tube problem, we implement the lattice Boltzmann method based
on theH theorem@I. Karlin, A. Ferrante, and H. C. O¨ ttinger, Europhys. Lett.47, 182 ~1999!#. Results of
simulation demonstrate significant improvement of stability, as compared to realizations without explicit en-
tropic estimations.

PACS number~s!: 47.11.1j, 05.20.Dd
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I. INTRODUCTION

Since the invention of the lattice-gas model@1#, lattice-
based methods for simulations of complex hydrodynam
phenomena received much attention over the past decad
these methods, hydrodynamic equations are not address
a direct discretization procedure, rather, a simple pseudo
ticle kinetics is introduced in such a way that the hydrod
namic equations are obtained on the large space and
scale. Particularly promising is the well-known lattice Bo
zmann method~LBM ! @2#. It is based on the fully discrete
velocity-space-time kinetic equation of the form,

N~x1c,t11!2N~x,t !5D@N~x,t !#. ~1!

HereN(x,t) is theb-component vector of populationsNi of
the pseudoparticles with velocitiesci , at the sitesx of a
lattice at discrete timet. The system of discrete velocities
any site is formed by the outgoing links of the lattice, and
also may include the zero vector.

One of the most important problems related to the LB
recognized by many authors, is the problem of numer
stability. For the LBM related to incompressible flow sim
lations, numerical instabilities preclude so far a study of h
Reynolds number flow situations. Instabilities become e
more annoying for compressible flows@3#.

It has been discussed for some time in the literature
stability of the LBM could be improved if the method cou
be equipped with an analog of the BoltzmannH theorem.
Recently, theoretical progress in this direction has b
achieved@4–8#. In particular, for the isothermal LBM, the
hydrodynamic fields are the density,r5(1,N), and the av-
erage momentum,rua5(ca ,N), where (•,•) denotes the
standard scalar product in theb-dimensional space of popu
lation vectors. In this case, one can construct entropy fu
tions in such a way that its local equilibrium implies th
crucial relation for the stress tensor,

~cacb ,Neq!5cs
2rdab1ruaub ,

up to the admissible degree of accuracy of the LBM@6#.
Furthermore, it has been suggested how to construct the
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lision integralD based solely on the knowledge of the e
tropy function, and how to stabilize the updates on the ba
of the discrete-timeH theorem@6,8#. In the sequel, we term
the LBM based on theH theorem the entropic lattice Boltz
mann method~ELBM!.

It is the goal of this paper to test the aforementioned t
oretical developments for a shock tube problem. This o
dimensional benchmark problem has been suggested s
time ago@9# for testing various ideas in the LBM. Thoug
this model is based on a very simple three-velocity lattice
provides a stringent test of stability. Implementation of t
ELBM demonstrated a large improvement of stability in th
benchmark problem. In fact, we were able to reach the va
of the kinematic viscosity as low as 10212 without any sign
of numerical instabilities. The most important part of th
realization is a robust root-finding procedure which imp
ments theH theorem.

II. CONSTRUCTION OF THE ELBM

An advantage of the LBM in comparison to the lattice-g
method is that the Galilean invariance of the Navier-Sto
equation is easier to control in the former than in the latt
In order that this advantage should not get lost in the ELB
entropy functions should be found for each lattice separat
We here consider the one-dimensional lattice with spacinc,
and the population vector at each sitex has three compo-
nents, N5(N1 ,N0 ,N2)†, corresponding to velocitiesc1

5c, c050, andc252c, respectively. For this model, th
entropy function has been found in@6#

H5N0 ln~N0/4!1N2 ln~N2!1N1 ln~N1!. ~2!

Realizations of the ELBM based on the entropy function~2!
result in the one-dimensional Navier-Stokes equation w
the sound speedcs5A1/3c, within the accuracy of the orde
(u/cs)

4. Construction of the ELBM involves the following
two steps~these steps are independent of the choice of
entropy!.

First, we specifybare collision integralD in such a way
as to satisfy the admissibility condition, (D,1)5(D,ca)50,
(D,¹H)<0, andD(Neq)50. Here¹H is the gradient ofH
in the space of population vectors. The choice of the b
collision integral is not unique. We here consider three ca

D5~g12g2!$exp@~“H,g2!#2exp@~“H,g1!#%, ~3a!
7999 ©2000 The American Physical Society
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D5~g12g2!~“H,g22g1!, ~3b!

D5Neq~N!2N, ~3c!

where g15(1,0,1)†, and g25(0,2,0)† are positive and
negative parts of the vectorg5g12g2, the latter is orthogo-
nal to the vectors of conserved fields, (g,1)50, and (g,c)
50. Collision integral of the form~3a! has been suggested
Ref. @6#, and is motivated by well-known models of chemic
kinetics in the framework of so-called Marcelin-De Dond
kinetic function @10#. Collision integral~3b! is a linearized
form thereof, and it is motivated by recently introduc
GENERIC models of nonequilibrium thermodynamics@11#.
Equation~3c! is the familiar Bhatnagar-Gross-Krook~BGK!
form.

Second, the population vector is updated according to
kinetic equation

N~x1c,t11!2N~x,t !5D* @N~x,t !#, ~4!

whereD* is a dressed~or stabilized! collision integral,

D* @N~x,t !#5ba@N~x,t !#D@N~x,t !#. ~5!

Here bP@0,1# is a parameter related to viscosity@see Eq.
~20! below#, anda is the scalar function of the populatio
vector. Functiona ensures the discrete-timeH theorem, and
is the nontrivial root of the scalar nonlinear equation,

H~N!5H~N1aD@N# !. ~6!

Put differently, bare collision integrals are stripped of a
relaxation time parameters, and are merely directions in
space of populations, pointing towards the change of
state in the collision event. Parametera defines the maxima
admissible collision step along this direction so that the
tropy will not decrease. The combinationba is thus the
effective relaxation time in the fully discrete kinetic pictur

An advantage of the bare BGK collision integral in th
ELBM scheme is not obvious: In most cases, the local eq
librium is not known as an explicit function of the hydrod
namic fields, and has to be evaluated numerically on e
iteration of the method for each lattice cite. However, af
the local equilibrium is found, the resulting bare BGK col
sion integral must be dressed by numerically solving Eq.~6!.
Thus, in comparison to bare collision integrals~3a! and~3b!
which only require the knowledge of the entropy but not
the local equilibrium, numerical efforts roughly double.
the example considered here we were able to find ana
cally the local equilibrium of theH function ~2!,

N05
2r

3
@22A11M2#,

N15
r

3 Fuc2cs
2

2cs
2

1A11M2G , ~7!

N25
r

3 F2
uc1cs

2

2cs
2

1A11M2G ,
l
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e
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where M25u2/cs
2 is the Mach number squared. Howeve

result ~7! is the exclusive case which does not happen
higher dimensions.

III. IDENTIFICATION OF VISCOSITY

Identification of the viscosity coefficient in the ELBM i
done on the basis of the Chapman-Enskog analysis@12# in
the vicinity of the local equilibrium, in the same way as
the standard lattice Boltzmann realizations. Let us do t
derivation in some detail for the example given here.

Linearization of the dressed collision integral~5! may be
written as

dD* 5ba~Neq!~“DuNeq,dN!1b~“auNeq,dN!D~Neq!.
~8!

The last term on the right-hand side of the latter expressio
equal to zero by the construction of the bare collision in
gral. In the sequel, we denote asL the matrix of the deriva-
tives of the bare collision integral at the local equilibrium
and writeaeq5a(Neq),

dD* 5ba~Neq!LdN. ~9!

For the bare collision integrals~3a! and~3b!, the components
of the matrixL have the form

Li j 52Keqgi(
k

]2H

]Nj]Nk
U

Neq

gk , ~10!

where positive scalar functions Keq are Keq
5exp@(“HuNeq,g6)# and Keq51 for the collision integrals
~3a! and ~3b!, respectively. Functionaeq is found upon ex-
panding Eq.~6! at equilibrium up to the quadratic indN
terms.@Note that a substitution ofNeq into Eq. ~6! does not
give an equation foraeq#. This results in the following qua-
dratic equation:

aeqS 1

2
aeq(

i jk
dNi

]2H

]Ni]Nj
U

Neq

L jkdNk

1(
i jkl

Li j dNj

]2H

]Ni]Nk
U

Neq

LkldNl D 50. ~11!

For the bare BGK collision integral~3c!, it has been already
demonstrated elsewhere@4# that the nontrivial solution to
this equation results inaeq52, so we shall discuss only th
cases~3a! and~3b!. Using the explicit form of the linearized
bare collision integral~10!, and the explicit form of the sec
ond derivative of the entropy function, the nontrivial root
Eq. ~11! is found to be

aeq5
2

Keq(
i j

gi~Ni
eq!21gi

. ~12!

Thus, Eq.~12! together with Eq.~10! defines the linearized
dressed collision integral,

dD* 522bL* dN, ~13!
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where

Li j* 5
gi~Nj

eq!21gj

(
m

gm~Nm
eq!21gm

. ~14!

Now it is important to notice that operatorL* has the same
projector propertyas the linearized BGK operator,

L* L* 5L* . ~15!

The image of the operatorL* is the linear subspace spann
by the vectorg.

With this description of the linearized dressed collisi
integral, we now follow the standard Chapman-Ensk
analysis, and seek the solution to the kinetic equation~4! in
the form, N5Neq1dNne, where the nonequilibrium par
dNne is orthogonal to the hydrodynamic subspace, (1,dNne)
5(c,dNne)50, and is found in terms of the expansio
dNne5edN(1)1e2dN(2)1O(e3), subject to the multiscale
expansion of the time and space derivatives,] t5e] t

(1)

1e2] t
(2)1O(e3), ]x5e]x

(1)1O(e2). Then,

22b(
j

L i j* dNj
(1)5@] t

(1)1ci]x#Ni
eq, ~16!

22b(
j

L i j* dNj
(2)5] t

(2)Ni
eq1@] t

(1)1ci]x#

3F2b(
j

L i j* dNj
(1)1dNi

(1)G .
~17!

By the Fredholm alternative, the solution to Eq.~16! is writ-
ten

dN(1)5dNspec
(1) 1dNhom

(1) ,

where dNhom
(1) is the general solution to the homogeno

equation,L* dNhom
(1) 50, anddNspec

(1) is a special solution to the
inhomogeneous equation~16!. The homogeneous solution
equal to zero by the orthogonality condition mention
above. The special solution has the form

dNspec
(1) 5Ag.

Thus, by the projector property~15!, Eqs.~16! and ~17! are
equivalent to the following two equations for the special s
lution ~we omit the subscript spec!:

22bdNi
(1)5@] t

(1)1ci]x#Ni
eq, ~18!

22bdNi
(2)5] t

(2)Ni
eq1~12b!@] t

(1)1ci]x#dNi
(1) . ~19!

The latter set of equations coincides with the well kno
case of the LBGK, in which the BGK relaxation parame
t21 is replaced by 2b, and we are immediately led to th
following viscosity coefficient for each of the bare collisio
integrals~3!:
g

-

r

n5
cs

2~12b!

2b
. ~20!

Thus, the ELBM is able to retain full control over the vis
cosity, while variation of the parameterb in the interval
@0,1# covers the full linear stability interval, and the lim
b→1 corresponds to the zero velocity limit@4,6#.

Several remarks to the derivation just given are in ord
While the local equilibriumNeq formally appears at the in
termediate state of computation, and, in particular, in
formula foraeq ~12!, the result for the viscosity~20! is inde-
pendent of it, and, in fact, the derivation has circumven
the explicit use ofNeq. This is a direct consequence of th
projector property~15!. In our example, the projector prop
erty, in turn, follows from the fact that the kinetic subspa
of the model is one dimensional. Thus, all the admissi
collision integrals like Eq.~3!, and any others, becom
equivalent near the local equilibrium, and they all result
the same viscosity coefficient. This is not the case when
dimension of the kinetic subspace is larger than one. In
case, various admissible bare collision integrals may lea
different expressions for the viscosity. Nevertheless, it is
ways possible to construct bare collision integrals which,
like the BGK, do not use the local equilibrium explicitly, an
at the same time their linearization satisfies the projec
property~15!. This construction will be reported in a sep
rate publication@14#. Finally, it should be stressed that th
theoretical derivation of the viscosity coefficient is alwa
strictly applicable only within the domain of validity of th
Chapman-Enskog analysis in the vicinity of the local eq
librium.

IV. IMPLEMENTATION

The ELBM algorithm differs from the standard LBM in
that the nonlinear equation~6! has to be solved at each tim
step on each lattice site. Although the time required for so
ing this equation does not contribute too much to the to
run time, a robust algorithm is required for solving th
highly nonlinear equation. Near the local equilibrium, t
Newton-Raphson method fails because the first deriva
tends to zero very rapidly. For this reason, we have c
structed an algorithm which uses successive substitut
near the local equilibrium~if possible!, and it uses a combi-
nation of the Newton-Raphson and of the bisection meth
@15# far away from the local equilibrium. The initial approx
mation, in most cases, was taken as the solution obta
from the quadratic expansion, but very far away from t
local equilibrium, the solution to the equation,N1aD50,
a.0, is a better guess@6#. Details of the code are availabl
from the authors.

V. SHOCK TUBE TESTS

We have studied the time evolution of a one-dimensio
front in a shock tube, a very classical problem in which
appears a compressive shock front, moving in the low d
sity, and a rarefaction front moving in the high-density r
gion @9#. These two fronts leave an intermediate region in
central portion of the tube with uniform densityrc , and uni-
form velocityuc . The tube is filled at timet50 with a gas at
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8002 PRE 62SANTOSH ANSUMALI AND ILIYA V. KARLIN
rest with uniform densityr2(u250) for x,0, andr1(u1

50) for x.0. For the inviscid case,n50, the density and
velocity profiles present a discontinuity across the sho
The shock speed@9# is given by the Rankine-Hugoniot rela
tions,

vs
25r ccs

2 , uc5
r c21

Ar c

cs , r c5
rc

r1

and r c and be obtained by using the Navier-Stokes relati

logr c1
r c21

Ar c

5 log
r2

r1
.

Simulations were performed in order to compare the stab
of the three LBM algorithms: the nonlinear LBE@9# ~LBE
hereafter!, the LBGK method with the polynomial equilib
rium ansatz@13#, and the present ELBM algorithm with th
bare collision integral~3a!.

Runs were performed on the lattice with 800 nodes. At
50 the lattice was populated as to give the densityr2

51.5 for 0<x<400, andr150.75 for 400,x<800. Stan-
dard bounce back boundary conditions were applied at b
ends of the tube. Results for the three algorithms are dem
strated in Figs. 1 and 2 for a relatively high value of viscos
n53.333331022. This value was taken in order to compa
all the three algorithms because it is close to the instability
the LBE@9#. It has been found that the LBGK and the ELB
never showed divergence when the viscosity was sma
thann,1023. However, in contrast to the ELBM, the resul
of the LBGK demonstrate large fluctuations already atn
,1. For this reason, results of the ELBM were always be
in comparison to the LBGK at low viscosity. It should b
also stressed that because the theoretical derivation o
viscosity coefficient~20! is valid only in the vicinity of the
local equilibrium, it may become invalid at the shocks whe
the populations may be far away from the local equilibriu
Increase in the effective viscosity near shocks would m
that the evaluated parametera ~6! is smaller than the near
equilibrium bound~12!. While we have not observed a ver

FIG. 1. Density profile~dimensionless lattice units! at t5500
for viscosityn53.333331022. Thin line: Exact solution. Symbol
Simulation.
k.

,

y

th
n-

f

er

r

he

e
.
n

significant decrease ofa in the simulation, its deviations
from Eq. ~6! may explain smoothening of the density and
the velocity profiles at the shocks. On the other hand,
have not observed a development of postshock oscillat
by the ELBM algorithm.

In the ELBM based on the entropy~2!, the sound velocity,
cs5A1/3c, is not kept constant by imposing a constrai
Deviations of the effective sound velocity,

cs85@r21c2~N2
eq1N1

eq!2u2#,

from cs measure the influence of anomalous terms@we note
that these terms are of the orderu4 by the choice of the
entropy~2!#. The errorE5(cs82cs)/cs was evaluated using
the exact local equilibrium~7!. In Fig. 3 the error is given for
the simulation with the viscosityn51.6310213. It was
found that the error was of the order of 0.1% even though
Mach number was as high as 0.3464 in the present sim
tion.

FIG. 2. Velocity profile. Simulation setup and notation same
in Fig. 1.

FIG. 3. Deviation of effective sound velocity from the exa
sound velocity,E5(cs82cs)/cs, at n51.6310213.
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VI. DISCUSSION AND CONCLUSIONS

The numerical test of the entropic lattice Boltzma
method demonstrated much better stability of this method
comparison to the LBM without theH theorem. The natura
working window of this approach is low velocity (u→0)
and low kinematic viscosity (b→1). Low values of velocity
are required in order to keep small the anomalous term
the orderu4, whereas the entropic estimation~6! allowed
implementations very close to the zero viscosity limit.

While the entropy-based lattice Boltzmann methods a
per construction, unconditionally stable, a word of caut
about their realizations is in order. On the one hand,
theoretical limit of zero kinematic viscosity is at the sam
time the limit of no convergence to the local equilibrium, t
population vectors becomes trapped on the fixed level of
entropy function. Furthermore, implementation of the co
be
ep

J

.
id

v.

er
in

of

e,

e

e

sion integrals like Eqs.~3a! or ~3b! requires working with
logarithmic functions which makes them more vulnerable
the round-off errors. Finally, since the whole construction
largely based on convexity of the entropy functions, and c
not tolerate any nonpositivity of the populations~unlike the
standard realizations which may tolerate negative pop
tions to some extent!, care must be taken when implementin
various entropy-based estimations of the collision step
Eq. ~6! in order not to violate these properties. All the
questions require a further detailed study, which is the s
ject of our current work.
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